

Therm LL

Premium Heat Transfer Oil

TECHNICAL DATA SHEET

Product Description:

Veedol Therm LL is a premium quality heat transfer oil formulated from highly refined base stock and specially chosen additive. The antioxidant additive provides excellent resistance to oxidation and thermal break down of the oil and ensures longer operating life.

Performance Specifications:

Meets & exceeds the performance requirements of

- ISO 6743 Part 12: Family Q
- IS 14745:1999 (Reaffirmed 2019)

Features/Benefits:

- Excellent thermal property providing high heat transfer rate and lowered operating cost
- Highly resistance to thermal cracking that helps keeping system free from deposits
- Very good low temperature property for easy starting in cold conditions
- Excellent oxidation & thermal stability for longer life and reduced downtime
- Low volatility and low vapor pressure

Application:

Veedol Therm LL is recommended for use in enclosed circulated heat transfer systems of process industry, chemical plants, textile units etc.

Veedol Therm LL can be used for maximum recommended bulk oil temperature of 320°C and film temperature is 340°C in a closed thermic fluid system.

Also suitable for open thermic fluid systems.

Typical Properties:

Test Parameter	Test Method	Typical Value	
Kinematic Viscosity, @ 40°C, cSt	ASTM D 445	35.3	
Viscosity Index	ASTM D 2270	105	
Flash Point (COC), °C	ASTM D 92	222	
Pour Point, °C	ASTM D 97	-9	

Properties mentioned above are typical only and minor variations which do not affect the product performances, are to be expected in normal manufacturing.

Rev. 01 JUL-2022

Therm LL

Premium Heat Transfer Oil

TECHNICAL DATA SHEET

Additional Information:

Temperature	Density	Viscosity	Specific Heat		Thermal Conductivity	
Deg. C	Kg/L	cSt	K.cal/kg, °C	kJ/kg, °C	Kcal/m hr, °C	W/m, K
0	0.887	374.28	0.43	1.802	0.115	0.1340
20	0.874	95.76	0.44	1.874	0.114	0.1320
40	0.861	35.30	0.46	1.947	0.112	0.1310
60	0.848	16.64	0.48	2.020	0.111	0.1296
80	0.835	9.29	0.49	2.090	0.110	0.1280
100	0.823	5.85	0.51	2.164	0.109	0.1260
120	0.810	4.01	0.53	2.236	0.107	0.1250
140	0.797	2.94	0.55	2.309	0.106	0.1238
160	0.784	2.26	0.56	2.381	0.105	0.1220
180	0.771	1.80	0.58	2.454	0.104	0.1209
200	0.758	1.49	0.60	2.526	0.102	0.1195
220	0.745	1.26	0.62	2.598	0.101	0.1180
240	0.732	1.09	0.63	2.670	0.100	0.1166
260	0.719	0.95	0.65	2.743	0.098	0.1150
280	0.706	0.85	0.67	2.816	0.097	0.1137
300	0.693	0.77	0.68	2.888	0.096	0.1120
320	0.680	0.70	0.70	2.960	0.095	0.1108

Rev. 01 JUL-2022